Vehicle Sliding Mode Control with Adaptive Upper Bounds: Static versus Dynamic Allocation to Saturated Tire Forces
نویسندگان
چکیده
Nonlinear vehicle control allocation is achieved through distributing the task of vehicle control among individual tire forces, which are constrained to nonlinear saturation conditions. A highlevel sliding mode control with adaptive upper bounds is considered to assess the body yaw moment and lateral force for the vehicle motion. The proposed controller only requires the online adaptation of control gains without acquiring the knowledge of upper bounds on system uncertainties. Static and dynamic control allocation approaches have been formulated to distribute high-level control objectives among the system inputs. For static control allocation, the interiorpoint method is applied to solve the formulated nonlinear optimization problem. Based on the dynamic control allocation method, a dynamic update law is derived to allocate vehicle control to tire forces. The allocated tire forces are fed into a low-level control module, where the applied torque and active steering angle at eachwheel are determined through a slip-ratio controller and an inverse tire model. Computer simulations are used to prove the significant effects of the proposed control allocation methods on improving the stability and handling performance. The advantages and limitations of each method have been discussed, and conclusions have been derived.
منابع مشابه
Interior-point Method to Optimize Tire Force Allocation in 4-wheeled Vehicles Using High-level Sliding Mode Control with Adaptive Gain
Nonlinear vehicle control allocation is achieved by distributing the control task to tire forces with nonlinear saturation constraints. The overall vehicle control is accomplished by developing a hierarchical scheme. First, a high-level sliding mode control with adaptive gain is considered to obtain the body force/moment for stable vehicle motion. The proposed controller only requires online ad...
متن کاملComparison of Static and Dynamic Control Allocation Techniques for Integrated Vehicle Control
Comparison of static and dynamic control allocation techniques for nonlinear constrained optimal distribution of tire forces in a vehicle control system is presented. The total body forces and moments, obtained from a high level controller, are distributed among tire forces, which are constrained to nonlinear constraint of saturation, through two approaches. For the static control allocation te...
متن کاملAdaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems
Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملVehicle Stabilization via a Self-Tuning Optimal Controller
Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To...
متن کامل